1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
| from io import open import glob import unicodedata import string import math import os import time import torch.nn as nn import torch import random import matplotlib.pyplot as plt import torch.utils.data from common_tools import set_seed import enviroments
set_seed(1) # 设置随机种子 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cpu")
# Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines]
def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters)
# Find letter index from all_letters, e.g. "a" = 0 def letterToIndex(letter): return all_letters.find(letter)
# Just for demonstration, turn a letter into a <1 x n_letters> Tensor def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 return tensor
# Turn a line into a <line_length x 1 x n_letters>, # or an array of one-hot letter vectors def lineToTensor(line): tensor = torch.zeros(len(line), 1, n_letters) for li, letter in enumerate(line): tensor[li][0][letterToIndex(letter)] = 1 return tensor
def categoryFromOutput(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i
def randomChoice(l): return l[random.randint(0, len(l) - 1)]
def randomTrainingExample(): category = randomChoice(all_categories) # 选类别 line = randomChoice(category_lines[category]) # 选一个样本 category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long) line_tensor = lineToTensor(line) # str to one-hot return category, line, category_tensor, line_tensor
def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s)
# Just return an output given a line def evaluate(line_tensor): hidden = rnn.initHidden()
for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden)
return output
def predict(input_line, n_predictions=3): print('\n> %s' % input_line) with torch.no_grad(): output = evaluate(lineToTensor(input_line))
# Get top N categories topv, topi = output.topk(n_predictions, 1, True)
for i in range(n_predictions): value = topv[0][i].item() category_index = topi[0][i].item() print('(%.2f) %s' % (value, all_categories[category_index]))
def get_lr(iter, learning_rate): lr_iter = learning_rate if iter < n_iters else learning_rate*0.1 return lr_iter
class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__()
self.hidden_size = hidden_size
self.u = nn.Linear(input_size, hidden_size) self.w = nn.Linear(hidden_size, hidden_size) self.v = nn.Linear(hidden_size, output_size)
self.tanh = nn.Tanh() self.softmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, hidden):
u_x = self.u(inputs)
hidden = self.w(hidden) hidden = self.tanh(hidden + u_x)
output = self.softmax(self.v(hidden))
return output, hidden
def initHidden(self): return torch.zeros(1, self.hidden_size)
def train(category_tensor, line_tensor): hidden = rnn.initHidden()
rnn.zero_grad()
line_tensor = line_tensor.to(device) hidden = hidden.to(device) category_tensor = category_tensor.to(device)
for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden)
loss = criterion(output, category_tensor) loss.backward()
# Add parameters' gradients to their values, multiplied by learning rate for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data)
return output, loss.item()
if __name__ == "__main__": # config path_txt = os.path.join(enviroments.names,"*.txt") all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) # 52 + 5 字符总数 print_every = 5000 plot_every = 5000 learning_rate = 0.005 n_iters = 200000
# step 1 data # Build the category_lines dictionary, a list of names per language category_lines = {} all_categories = [] for filename in glob.glob(path_txt): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines
n_categories = len(all_categories)
# step 2 model n_hidden = 128 # rnn = RNN(n_letters, n_hidden, n_categories) rnn = RNN(n_letters, n_hidden, n_categories)
rnn.to(device)
# step 3 loss criterion = nn.NLLLoss()
# step 4 optimize by hand
# step 5 iteration current_loss = 0 all_losses = [] start = time.time() for iter in range(1, n_iters + 1): # sample category, line, category_tensor, line_tensor = randomTrainingExample()
# training output, loss = train(category_tensor, line_tensor)
current_loss += loss
# Print iter number, loss, name and guess if iter % print_every == 0: guess, guess_i = categoryFromOutput(output) correct = '✓' if guess == category else '✗ (%s)' % category print('Iter: {:<7} time: {:>8s} loss: {:.4f} name: {:>10s} pred: {:>8s} label: {:>8s}'.format( iter, timeSince(start), loss, line, guess, correct))
# Add current loss avg to list of losses if iter % plot_every == 0: all_losses.append(current_loss / plot_every) current_loss = 0 path_model = os.path.join(BASE_DIR, "rnn_state_dict.pkl") torch.save(rnn.state_dict(), path_model) plt.plot(all_losses) plt.show()
predict('Yue Tingsong') predict('Yue tingsong') predict('yutingsong')
predict('test your name')
|