本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py
这篇文章主要介绍了 PyTorch 中的池化层、线性层和激活函数层。
池化层
池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。 另外一点值得注意:pooling也可以提供一些旋转不变性。 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避免过拟合的出现;一方面进行特征压缩,提取主要特征。
有最大池化和平均池化两张方式。
最大池化:nn.MaxPool2d()
1 nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
这个函数的功能是进行 2 维的最大池化,主要参数如下:
kernel_size:池化核尺寸
stride:步长,通常与 kernel_size 一致
padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
dilation:池化间隔大小,默认为1。常用于图像分割任务中,主要是为了提升感受野
ceil_mode:默认为 False,尺寸向下取整。为 True 时,尺寸向上取整
return_indices:为 True 时,返回最大池化所使用的像素的索引,这些记录的索引通常在反最大池化时使用,把小的特征图反池化到大的特征图时,每一个像素放在哪个位置。
下图 (a) 表示反池化,(b) 表示上采样,(c) 表示反卷积。
下面是最大池化的代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 import os import torch import torch.nn as nn from torchvision import transforms from matplotlib import pyplot as plt from PIL import Image from common_tools import transform_invert, set_seed set_seed(1) # 设置随机种子 # ================================= load img ================================== path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs/lena.png") img = Image.open(path_img).convert('RGB') # 0~255 # convert to tensor img_transform = transforms.Compose([transforms.ToTensor()]) img_tensor = img_transform(img) img_tensor.unsqueeze_(dim=0) # C*H*W to B*C*H*W # ================================= create convolution layer ================================== # ================ maxpool flag = 1 # flag = 0 if flag: maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2)) # input:(i, o, size) weights:(o, i , h, w) img_pool = maxpool_layer(img_tensor) print("池化前尺寸:{}\n池化后尺寸:{}".format(img_tensor.shape, img_pool.shape)) img_pool = transform_invert(img_pool[0, 0:3, ...], img_transform) img_raw = transform_invert(img_tensor.squeeze(), img_transform) plt.subplot(122).imshow(img_pool) plt.subplot(121).imshow(img_raw) plt.show()
结果和展示的图片如下:
1 2 池化前尺寸:torch.Size([1, 3, 512, 512]) 池化后尺寸:torch.Size([1, 3, 256, 256])
nn.AvgPool2d()
1 torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
这个函数的功能是进行 2 维的平均池化,主要参数如下:
kernel_size:池化核尺寸
stride:步长,通常与 kernel_size 一致
padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
dilation:池化间隔大小,默认为1。常用于图像分割任务中,主要是为了提升感受野
ceil_mode:默认为 False,尺寸向下取整。为 True 时,尺寸向上取整
count_include_pad:在计算平均值时,是否把填充值考虑在内计算
divisor_override:除法因子。在计算平均值时,分子是像素值的总和,分母默认是像素值的个数。如果设置了 divisor_override,把分母改为 divisor_override。
1 2 3 4 img_tensor = torch.ones((1, 1, 4, 4)) avgpool_layer = nn.AvgPool2d((2, 2), stride=(2, 2)) img_pool = avgpool_layer(img_tensor) print("raw_img:\n{}\npooling_img:\n{}".format(img_tensor, img_pool))
输出如下:
1 2 3 4 5 6 7 8 raw_img: tensor([[[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]]]) pooling_img: tensor([[[[1., 1.], [1., 1.]]]])
加上divisor_override=3
后,输出如下:
1 2 3 4 5 6 7 8 raw_img: tensor([[[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]]]) pooling_img: tensor([[[[1.3333, 1.3333], [1.3333, 1.3333]]]])
nn.MaxUnpool2d()
1 nn.MaxUnpool2d(kernel_size, stride=None, padding=0)
功能是对二维信号(图像)进行最大值反池化,主要参数如下:
kernel_size:池化核尺寸
stride:步长,通常与 kernel_size 一致
padding:填充宽度
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 # pooling img_tensor = torch.randint(high=5, size=(1, 1, 4, 4), dtype=torch.float) maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2), return_indices=True) img_pool, indices = maxpool_layer(img_tensor) # unpooling img_reconstruct = torch.randn_like(img_pool, dtype=torch.float) maxunpool_layer = nn.MaxUnpool2d((2, 2), stride=(2, 2)) img_unpool = maxunpool_layer(img_reconstruct, indices) print("raw_img:\n{}\nimg_pool:\n{}".format(img_tensor, img_pool)) print("img_reconstruct:\n{}\nimg_unpool:\n{}".format(img_reconstruct, img_unpool))
输出如下:
1 2 3 4 5 6 7 8 9 10 11 12 # pooling img_tensor = torch.randint(high=5, size=(1, 1, 4, 4), dtype=torch.float) maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2), return_indices=True) img_pool, indices = maxpool_layer(img_tensor) # unpooling img_reconstruct = torch.randn_like(img_pool, dtype=torch.float) maxunpool_layer = nn.MaxUnpool2d((2, 2), stride=(2, 2)) img_unpool = maxunpool_layer(img_reconstruct, indices) print("raw_img:\n{}\nimg_pool:\n{}".format(img_tensor, img_pool)) print("img_reconstruct:\n{}\nimg_unpool:\n{}".format(img_reconstruct, img_unpool))
线性层
线性层又称为全连接层,其每个神经元与上一个层所有神经元相连,实现对前一层的线性组合或线性变换。
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 inputs = torch.tensor([[1., 2, 3]]) linear_layer = nn.Linear(3, 4) linear_layer.weight.data = torch.tensor([[1., 1., 1.], [2., 2., 2.], [3., 3., 3.], [4., 4., 4.]]) linear_layer.bias.data.fill_(0.5) output = linear_layer(inputs) print(inputs, inputs.shape) print(linear_layer.weight.data, linear_layer.weight.data.shape) print(output, output.shape)
输出为:
1 2 3 4 5 6 tensor([[1., 2., 3.]]) torch.Size([1, 3]) tensor([[1., 1., 1.], [2., 2., 2.], [3., 3., 3.], [4., 4., 4.]]) torch.Size([4, 3]) tensor([[ 6.5000, 12.5000, 18.5000, 24.5000]], grad_fn=<AddmmBackward>) torch.Size([1, 4])
激活函数层
假设第一个隐藏层为:\(H_{1}=X \times W_{1}\) ,第二个隐藏层为:\(H_{2}=H_{1} \times W_{2}\) ,输出层为:
$
\[\begin{aligned} \text { Out } \boldsymbol{p} \boldsymbol{u} \boldsymbol{t} &=\boldsymbol{H}_{2} * \boldsymbol{W}_{3} \\ &=\boldsymbol{H}_{1} * \boldsymbol{W}_{2} * \boldsymbol{W}_{3} \\ &=\boldsymbol{X} * (\boldsymbol{W}_{1} *\boldsymbol{W}_{2} * \boldsymbol{W}_{3}) \\ &=\boldsymbol{X} * {W} \end{aligned}\]
$
如果没有非线性变换,由于矩阵乘法的结合性,多个线性层的组合等价于一个线性层。
激活函数对特征进行非线性变换,赋予了多层神经网络具有深度的意义。下面介绍一些激活函数层。
nn.Sigmoid
计算公式:\(y=\frac{1}{1+e^{-x}}\)
梯度公式:\(y^{\prime}=y *(1-y)\)
特性:
输出值在(0,1),符合概率
导数范围是 [0, 0.25],容易导致梯度消失
输出为非 0 均值,破坏数据分布
nn.tanh
计算公式:\(y=\frac{\sin x}{\cos x}=\frac{e^{x}-e^{-x}}{e^{-}+e^{-x}}=\frac{2}{1+e^{-2 x}}+1\)
梯度公式:\(y^{\prime}=1-y^{2}\)
特性:
输出值在(-1, 1),数据符合 0 均值
导数范围是 (0,1),容易导致梯度消失
nn.ReLU(修正线性单元)
计算公式:\(y=max(0, x)\)
梯度公式:\(y^{\prime}=\left\{\begin{array}{ll}1, & x>0 \\ u n d \text { ef ined, } & x=0 \\ 0, & x<0\end{array}\right.\)
特性:
输出值均为正数,负半轴的导数为 0,容易导致死神经元
导数是 1,缓解梯度消失,但容易引发梯度爆炸
针对 RuLU 会导致死神经元的缺点,出现了下面 3 种改进的激活函数。
nn.LeakyReLU
有一个参数negative_slope
:设置负半轴斜率
nn.PReLU
有一个参数init
:设置初始斜率,这个斜率是可学习的
nn.RReLU
R 是 random 的意思,负半轴每次斜率都是随机取 [lower, upper] 之间的一个数
lower:均匀分布下限
upper:均匀分布上限
参考资料
如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。
我的文章会首发在公众号上,欢迎扫码关注我的公众号张贤同学 。