PyTorch/PyTorch 优化器

PyTorch/PyTorch 优化器

这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念、optimizer 的属性、optimizer 的方法。

优化器的概念

PyTorch 中的优化器是用于管理并更新模型中可学习参数的值,使得模型输出更加接近真实标签。

optimizer 的属性

PyTorch 中提供了 Optimizer 类,定义如下:

1
2
3
4
5
class Optimizer(object):
def __init__(self, params, defaults):
self.defaults = defaults
self.state = defaultdict(dict)
self.param_groups = []

主要有 3 个属性

  • defaults:优化器的超参数,如 weight_decay,momentum
  • state:参数的缓存,如 momentum 中需要用到前几次的梯度,就缓存在这个变量中
  • param_groups:管理的参数组,是一个 list,其中每个元素是字典,包括 momentum、lr、weight_decay、params 等。
  • _step_count:记录更新 次数,在学习率调整中使用

optimizer 的方法

  • zero_grad():清空所管理参数的梯度。由于 PyTorch 的特性是张量的梯度不自动清零,因此每次反向传播之后都需要清空梯度。代码如下:

    1
    2
    3
    4
    5
    6
    7
    def zero_grad(self):
    r"""Clears the gradients of all optimized :class:`torch.Tensor` s."""
    for group in self.param_groups:
    for p in group['params']:
    if p.grad is not None:
    p.grad.detach_()
    p.grad.zero_()
  • step():执行一步梯度更新

  • add_param_group():添加参数组,主要代码如下:

    1
    2
    3
    4
    5
    6
    def add_param_group(self, param_group):
    params = param_group['params']
    if isinstance(params, torch.Tensor):
    param_group['params'] = [params]
    ...
    self.param_groups.append(param_group)
  • state_dict():获取优化器当前状态信息字典

  • load_state_dict():加载状态信息字典,包括 state 、momentum_buffer 和 param_groups。主要用于模型的断点续训练。我们可以在每隔 50 个 epoch 就保存模型的 state_dict 到硬盘,在意外终止训练时,可以继续加载上次保存的状态,继续训练。代码如下:

    1
    2
    3
    4
    5
    6
    7
    def state_dict(self):
    r"""Returns the state of the optimizer as a :class:`dict`.
    ...
    return {
    'state': packed_state,
    'param_groups': param_groups,
    }

下面是代码示例:

step()

张量 weight 的形状为\(2 \times 2\),并设置梯度为 1,把 weight 传进优化器,学习率设置为 1,执行optimizer.step()更新梯度,也就是所有的张量都减去 1。

1
2
3
4
5
6
7
weight = torch.randn((2, 2), requires_grad=True)
weight.grad = torch.ones((2, 2))

optimizer = optim.SGD([weight], lr=1)
print("weight before step:{}".format(weight.data))
optimizer.step() # 修改lr=1, 0.1观察结果
print("weight after step:{}".format(weight.data))

输出为:

1
2
3
4
weight before step:tensor([[0.6614, 0.2669],
[0.0617, 0.6213]])
weight after step:tensor([[-0.3386, -0.7331],
[-0.9383, -0.3787]])

zero_grad()

代码如下:

1
2
3
4
5
6
7
8
9
print("weight before step:{}".format(weight.data))
optimizer.step() # 修改lr=1 0.1观察结果
print("weight after step:{}".format(weight.data))

print("weight in optimizer:{}\nweight in weight:{}\n".format(id(optimizer.param_groups[0]['params'][0]), id(weight)))

print("weight.grad is {}\n".format(weight.grad))
optimizer.zero_grad()
print("after optimizer.zero_grad(), weight.grad is\n{}".format(weight.grad))

输出为:

1
2
3
4
5
6
7
8
9
10
11
weight before step:tensor([[0.6614, 0.2669],
[0.0617, 0.6213]])
weight after step:tensor([[-0.3386, -0.7331],
[-0.9383, -0.3787]])
weight in optimizer:1932450477472
weight in weight:1932450477472
weight.grad is tensor([[1., 1.],
[1., 1.]])
after optimizer.zero_grad(), weight.grad is
tensor([[0., 0.],
[0., 0.]])

可以看到优化器的 param_groups 中存储的参数和 weight 的内存地址是一样的,所以优化器中保存的是参数的地址,而不是把参数复制到优化器中。

add_param_group()

向优化器中添加一组参数,代码如下:

1
2
3
4
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))
w2 = torch.randn((3, 3), requires_grad=True)
optimizer.add_param_group({"params": w2, 'lr': 0.0001})
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))

输出如下:

1
2
3
4
5
6
7
8
optimizer.param_groups is
[{'params': [tensor([[0.6614, 0.2669],
[0.0617, 0.6213]], requires_grad=True)], 'lr': 1, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]
optimizer.param_groups is
[{'params': [tensor([[0.6614, 0.2669],
[0.0617, 0.6213]], requires_grad=True)], 'lr': 1, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}, {'params': [tensor([[-0.4519, -0.1661, -1.5228],
[ 0.3817, -1.0276, -0.5631],
[-0.8923, -0.0583, -0.1955]], requires_grad=True)], 'lr': 0.0001, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]

state_dict()

首先进行 10 次反向传播更新,然后对比 state_dict 的变化。可以使用torch.save()把 state_dict 保存到 pkl 文件中。

1
2
3
4
5
6
7
8
9
10
11
optimizer = optim.SGD([weight], lr=0.1, momentum=0.9)
opt_state_dict = optimizer.state_dict()

print("state_dict before step:\n", opt_state_dict)

for i in range(10):
optimizer.step()

print("state_dict after step:\n", optimizer.state_dict())

torch.save(optimizer.state_dict(), os.path.join(BASE_DIR, "optimizer_state_dict.pkl"))

输出为:

1
2
3
4
5
state_dict before step:
{'state': {}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [1976501036448]}]}
state_dict after step:
{'state': {1976501036448: {'momentum_buffer': tensor([[6.5132, 6.5132],
[6.5132, 6.5132]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [1976501036448]}]}

经过反向传播后,state_dict 中的字典保存了1976501036448作为 key,这个 key 就是参数的内存地址。

load_state_dict()

上面保存了 state_dict 之后,可以先使用torch.load()把加载到内存中,然后再使用load_state_dict()加载到模型中,继续训练。代码如下:

1
2
3
4
5
6
optimizer = optim.SGD([weight], lr=0.1, momentum=0.9)
state_dict = torch.load(os.path.join(BASE_DIR, "optimizer_state_dict.pkl"))

print("state_dict before load state:\n", optimizer.state_dict())
optimizer.load_state_dict(state_dict)
print("state_dict after load state:\n", optimizer.state_dict())

输出如下:

1
2
3
4
5
state_dict before load state:
{'state': {}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [2075286132128]}]}
state_dict after load state:
{'state': {2075286132128: {'momentum_buffer': tensor([[6.5132, 6.5132],
[6.5132, 6.5132]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [2075286132128]}]}

学习率

学习率是影响损失函数收敛的重要因素,控制了梯度下降更新的步伐。下面构造一个损失函数\(y=(2x)^{2}\)\(x\)的初始值为 2,学习率设置为 1。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
iter_rec, loss_rec, x_rec = list(), list(), list()

lr = 0.01 # /1. /.5 /.2 /.1 /.125
max_iteration = 20 # /1. 4 /.5 4 /.2 20 200

for i in range(max_iteration):

y = func(x)
y.backward()

print("Iter:{}, X:{:8}, X.grad:{:8}, loss:{:10}".format(
i, x.detach().numpy()[0], x.grad.detach().numpy()[0], y.item()))

x_rec.append(x.item())

x.data.sub_(lr * x.grad) # x -= x.grad 数学表达式意义: x = x - x.grad # 0.5 0.2 0.1 0.125
x.grad.zero_()

iter_rec.append(i)
loss_rec.append(y)

plt.subplot(121).plot(iter_rec, loss_rec, '-ro')
plt.xlabel("Iteration")
plt.ylabel("Loss value")

x_t = torch.linspace(-3, 3, 100)
y = func(x_t)
plt.subplot(122).plot(x_t.numpy(), y.numpy(), label="y = 4*x^2")
plt.grid()
y_rec = [func(torch.tensor(i)).item() for i in x_rec]
plt.subplot(122).plot(x_rec, y_rec, '-ro')
plt.legend()
plt.show()

结果如下:


损失函数没有减少,而是增大,这时因为学习率太大,无法收敛,把学习率设置为 0.01 后,结果如下;


从上面可以看出,适当的学习率可以加快模型的收敛。

下面的代码是试验 10 个不同的学习率 ,[0.01, 0.5] 之间线性选择 10 个学习率,并比较损失函数的收敛情况

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
iteration = 100
num_lr = 10
lr_min, lr_max = 0.01, 0.2 # .5 .3 .2

lr_list = np.linspace(lr_min, lr_max, num=num_lr).tolist()
loss_rec = [[] for l in range(len(lr_list))]
iter_rec = list()

for i, lr in enumerate(lr_list):
x = torch.tensor([2.], requires_grad=True)
for iter in range(iteration):

y = func(x)
y.backward()
x.data.sub_(lr * x.grad) # x.data -= x.grad
x.grad.zero_()

loss_rec[i].append(y.item())

for i, loss_r in enumerate(loss_rec):
plt.plot(range(len(loss_r)), loss_r, label="LR: {}".format(lr_list[i]))
plt.legend()
plt.xlabel('Iterations')
plt.ylabel('Loss value')
plt.show()

结果如下:


上面的结果表示在学习率较大时,损失函数越来越大,模型不能收敛。把学习率区间改为 [0.01, 0.2] 之后,结果如下:


这个损失函数在学习率为 0.125 时最快收敛,学习率为 0.01 收敛最慢。但是不同模型的最佳学习率不一样,无法事先知道,一般把学习率设置为比较小的数就可以了。

momentum 动量

momentum 动量的更新方法,不仅考虑当前的梯度,还会结合前面的梯度。

momentum 来源于指数加权平均:\(\mathrm{v}_{t}=\boldsymbol{\beta} * \boldsymbol{v}_{t-1}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}_{t}\),其中\(v_{t-1}\)是上一个时刻的指数加权平均,\(\theta_{t}\)表示当前时刻的值,\(\beta\)是系数,一般小于 1。指数加权平均常用于时间序列求平均值。假设现在求得是 100 个时刻的指数加权平均,那么

\(\mathrm{v}_{100}=\boldsymbol{\beta} * \boldsymbol{v}_{99}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}_{100}\) \(=(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}_{100}+\boldsymbol{\beta} *\left(\boldsymbol{\beta} * \boldsymbol{v}_{98}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}_{99}\right)\) \(=(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}_{100}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\beta} * \boldsymbol{\theta}_{99}+\left(\boldsymbol{\beta}^{2} * \boldsymbol{v}_{98} \right)\)

\(=\sum_{i}^{N}(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\beta}^{i} * \boldsymbol{\theta}_{N-i}\)

从上式可以看到,由于\(\beta\)小于1,越前面时刻的\(\theta\)\(\beta\)的次方就越大,系数就越小。

\(\beta\) 可以理解为记忆周期,\(\beta\)越小,记忆周期越短,\(\beta\)越大,记忆周期越长。通常\(\beta\)设置为 0.9,那么 \(\frac{1}{1-\beta}=\frac{1}{1-0.9}=10\),表示更关注最近 10 天的数据。

下面代码展示了\(\beta=0.9\)的情况

1
2
3
4
5
6
7
8
9
10
weights = exp_w_func(beta, time_list)

plt.plot(time_list, weights, '-ro', label="Beta: {}\ny = B^t * (1-B)".format(beta))
plt.xlabel("time")
plt.ylabel("weight")
plt.legend()
plt.title("exponentially weighted average")
plt.show()

print(np.sum(weights))

结果为:


下面代码展示了不同的\(\beta\)取值情况

1
2
3
4
5
6
7
8
beta_list = [0.98, 0.95, 0.9, 0.8]
w_list = [exp_w_func(beta, time_list) for beta in beta_list]
for i, w in enumerate(w_list):
plt.plot(time_list, w, label="Beta: {}".format(beta_list[i]))
plt.xlabel("time")
plt.ylabel("weight")
plt.legend()
plt.show()

结果为:


\(\beta\)的值越大,记忆周期越长,就会更多考虑前面时刻的数值,因此越平缓。

在 PyTroch 中,momentum 的更新公式是:

\(v_{i}=m * v_{i-1}+g\left(w_{i}\right)\) \(w_{i+1}=w_{i}-l r * v_{i}\)

其中\(w_{i+1}\)表示第\(i+1\)次更新的参数,lr 表示学习率,\(v_{i}\)表示更新量,\(m\)表示 momentum 系数,\(g(w_{i})\)表示\(w_{i}\)的梯度。展开表示如下:

\(\begin{aligned} \boldsymbol{v}_{100} &=\boldsymbol{m} * \boldsymbol{v}_{99}+\boldsymbol{g}\left(\boldsymbol{w}_{100}\right) \\ &=\boldsymbol{g}\left(\boldsymbol{w}_{100}\right)+\boldsymbol{m} *\left(\boldsymbol{m} * \boldsymbol{v}_{98}+\boldsymbol{g}\left(\boldsymbol{w}_{99}\right)\right) \\ &=\boldsymbol{g}\left(\boldsymbol{w}_{100}\right)+\boldsymbol{m} * \boldsymbol{g}\left(\boldsymbol{w}_{99}\right)+\boldsymbol{m}^{2} * \boldsymbol{v}_{98} \\ &=\boldsymbol{g}\left(\boldsymbol{w}_{100}\right)+\boldsymbol{m} * \boldsymbol{g}\left(\boldsymbol{w}_{99}\right)+\boldsymbol{m}^{2} * \boldsymbol{g}\left(\boldsymbol{w}_{98}\right)+\boldsymbol{m}^{3} * \boldsymbol{v}_{97} \end{aligned}\)

下面的代码是构造一个损失函数\(y=(2x)^{2}\)\(x\)的初始值为 2,记录每一次梯度下降并画图,学习率使用 0.01 和 0.03,不适用 momentum。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def func(x):
return torch.pow(2*x, 2) # y = (2x)^2 = 4*x^2 dy/dx = 8x

iteration = 100
m = 0 # .9 .63

lr_list = [0.01, 0.03]

momentum_list = list()
loss_rec = [[] for l in range(len(lr_list))]
iter_rec = list()

for i, lr in enumerate(lr_list):
x = torch.tensor([2.], requires_grad=True)

momentum = 0. if lr == 0.03 else m
momentum_list.append(momentum)

optimizer = optim.SGD([x], lr=lr, momentum=momentum)

for iter in range(iteration):

y = func(x)
y.backward()

optimizer.step()
optimizer.zero_grad()

loss_rec[i].append(y.item())

for i, loss_r in enumerate(loss_rec):
plt.plot(range(len(loss_r)), loss_r, label="LR: {} M:{}".format(lr_list[i], momentum_list[i]))
plt.legend()
plt.xlabel('Iterations')
plt.ylabel('Loss value')
plt.show()

结果为:


可以看到学习率为 0.3 时收敛更快。然后我们把学习率为 0.1 时,设置 momentum 为 0.9,结果如下:

1593601633017
1593601633017

虽然设置了 momentum,但是震荡收敛,这是由于 momentum 的值太大,每一次都考虑上一次的比例太多,可以把 momentum 设置为 0.63 后,结果如下:


可以看到设置适当的 momentum 后,学习率 0.1 的情况下收敛更快了。

下面介绍 PyTroch 所提供的 10 种优化器。

PyTroch 提供的 10 种优化器

optim.SGD

1
optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False

随机梯度下降法

主要参数:

  • params:管理的参数组
  • lr:初始学习率
  • momentum:动量系数\(\beta\)
  • weight_decay:L2 正则化系数
  • nesterov:是否采用 NAG

optim.Adagrad

自适应学习率梯度下降法

optim.RMSprop

Adagrad 的改进

optim.Adadelta

optim.Adam

RMSProp 集合 Momentum,这个是目前最常用的优化器,因为它可以使用较大的初始学习率。

optim.Adamax

Adam 增加学习率上限

optim.SparseAdam

稀疏版的 Adam

optim.ASGD

随机平均梯度下降

optim.Rprop

弹性反向传播,这种优化器通常是在所有样本都一起训练,也就是 batchsize 为全部样本时使用。

optim.LBFGS

BFGS 在内存上的改进

评论